

HDR Imaging

Xiaohang Yu

Lekang Yuan

The HDR Problem

Short exposure: Noise in shadows

Long exposure: Clipping in highlights

- Limited dynamic range of the camera:
 noise or clipping
- How to get HDR image from LDR input?

Two methods for Multiframe HDR

The Debevec Method (Use Opency Function)

Exposure Fusion(Implemented by ourselves)

CRF estimation (Debevec)

Input:

Pixel value Z and exposure time Δt

Paul E Debevec and Jitendra Malik. Recovering high dynamic range radiance maps from photographs. In ACM SIGGRAPH 2008 classes, page 31. ACM, 2008

Estimate Camera response function by optimizing the target function

HDR recovery and tonemapping

$$\ln E_i = \frac{\sum_{j=1}^{P} w(Z_{ij})(g(Z_{ij}) - \ln \Delta t_j)}{\sum_{j=1}^{P} w(Z_{ij})}$$

HDR recovery:

weighted average of recovered HDR values in images with different exposures

Tonemapping:
Map HDR image to LDR for display

Exposure Fusion

(a) Input images with corresponding weight maps

(b) Fused result

Directly **fuse** several LDR images based on **the quality of a pixel** in different LDR images

Fusion weights

$$W_{ij,k} = (C_{ij,k})^{\omega_C} \times (S_{ij,k})^{\omega_S} \times (E_{ij,k})^{\omega_E}$$

Compute fusion weights from the **contrast**, **saturation and exposedness** of an image

Naïve Fusion

If we directly fuse the images by multiplying images with the weights, We get corrupted result:

Fusion with Laplacian Pyramid

Naïve approach: $I_{hf} \times W_{hf} + I_{lf} \times W_{hf}$

Fusion with Laplacian Pyramid

Pyramid approach: $I_{hf} \times W_{hf} + I_{lf} \times W_{lf}$

Compared App: Aurora

- Claims to be the best HDR app
- Quantum Al engine

Results

Aurora: More details in highlights

- Fusion: Less noise In shadows
- Aurora: More details in highlights
- Besides, results of Fusion and Aurora are quite samiliar
- Both looks more visually appearling than debevec (related to the tonemapping function)

Single-shot HDR Reconstruction

- HDR CNN
- HDR by Learning to Reverse the Camera Pipeline
- Deep Optics for HDR Imaging

HDR-CNN

Fully CNN design in the form of a hybrid dynamic range auto-encoder

- Predicts details in over-exposed regions
- The encoder converts an LDR input to a latent feature representation
- The decoder reconstructs it into HDR image in the log domain

HDR by Reversing Camera Pipeline

Reversing image formation pipeline

- Dequantization-Net restores the missing details
- Linearization-Net estimates an inverse CRF and converts non-linear LDR to linear image
- Hallucination-Net predicts the missing content in over-exposed regions

Deep Optics for HDR Imaging

end-to-end optimization of optics and image processing

- Optical encoder and CNN-based decoder pipeline
- Learned grating-like diffractive optical element(DOE)
- Fabricate the optimized diffractive optical element and validate the proposed system experimentally

HDR-CNN Results

SingleHDR Results

SingleHDR Results on Different Inputs

Inputs:

Outputs:

Thanks for Listening!